Jump to content

Search the Community

Showing results for tags 'gmp'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Talk
    • Everything Else
    • Gaming
    • Questions
    • Business and Enterprise IT
    • Security
    • Hacks & Mods
    • Applications & Coding
    • Trading Post
  • Hak5 Gear
    • Hak5 Cloud C²
    • WiFi Pineapple Mark VII
    • USB Rubber Ducky
    • Bash Bunny
    • Key Croc
    • Packet Squirrel
    • Shark Jack
    • Signal Owl
    • LAN Turtle
    • Screen Crab
    • Plunder Bug
  • O.MG (Mischief Gadgets)
    • O.MG Cable
    • O.MG DemonSeed EDU
  • WiFi Pineapple (previous generations)
    • WiFi Pineapple TETRA
    • WiFi Pineapple NANO
    • WiFi Pineapple Mark V
    • WiFi Pineapple Mark IV
    • Pineapple Modules
    • WiFi Pineapples Mark I, II, III
  • Hak5 Shows
  • Community
    • Forums and Wiki
    • #Hak5
  • Projects
    • SDR - Software Defined Radio
    • Community Projects
    • Interceptor
    • USB Hacks
    • USB Multipass
    • Pandora Timeshifting

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Enter a five letter word.

Found 1 result

  1. So this is a little demo I've been working on that plays around with ECC Point Mathematics & encryption. Many of the demos I've found have been not functional from beginning to end, and although this is not going to be a secure version of ECC, it does demo some of the basic properties of it. I'm using pieces of existing code, along with my own to get it working. Individual ECC curve properties as well as the public key/private key pair can be created with openssl: CRYPTNAME=secp192k1 && openssl ecparam -name $CRYPTNAME -out $CRYPTNAME.pem && openssl ecparam -in $CRYPTNAME.pem -noout -text -C && openssl ecparam -in $CRYPTNAME.pem -genkey -noout -out $CRYPTNAME-key.pem && openssl ec -in $CRYPTNAME-key.pem -noout -text && rm -f $CRYPTNAME.pem $CRYPTNAME-key.pem In real ECIES, a common point is derived on both the senders end, as well as the receivers end, which is used to agree upon symmetric key. Normally something like AES is used to encrypt the message with this key, but I'm just xor'ing the message to keep the example small. Here it is: #include<stdio.h> #include<stdlib.h> #include<string.h> #include<gmp.h> #include<time.h> struct Point{ mpz_t x; mpz_t y; }; struct Elliptic_Curve{ mpz_t a; //y^2 = x^3 + a*x + b mpz_t b; mpz_t p; mpz_t n; //Order struct Point G; //Base Point mpz_t h; //Cofactor }; void Point_Addition(struct Elliptic_Curve EC, struct Point P,struct Point Q, struct Point *R); void Point_Doubling(struct Elliptic_Curve EC, struct Point P,struct Point *R); void Scalar_Multiplication(struct Elliptic_Curve EC, mpz_t m, struct Point P, struct Point *R); int main(int argc, char * argv[]){ srand(time(NULL)); //not crypto secure struct Elliptic_Curve secp192k1; mpz_init(secp192k1.a); mpz_init(secp192k1.b); mpz_init(secp192k1.p); mpz_init(secp192k1.n); mpz_init(secp192k1.G.x); mpz_init(secp192k1.G.y); mpz_init(secp192k1.h); mpz_set_str(secp192k1.a,"0", 16); //Elliptic Curve P-192 mpz_set_str(secp192k1.b,"3", 16); mpz_set_str(secp192k1.p,"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16); mpz_set_str(secp192k1.n,"FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16); mpz_set_str(secp192k1.G.x,"DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16); mpz_set_str(secp192k1.G.y,"9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16); mpz_set_str(secp192k1.h,"1", 16); mpz_t da; //priv struct Point Qa; //pub mpz_init(da); mpz_init(Qa.x); mpz_init(Qa.y); mpz_set_str(da, "e03a7a761dc3f4b5ff363906af1a1bfb97e1cbfc837834ed", 16); //private key, a random integer from "0" to "n" mpz_set_str(Qa.x,"8d4af03e8368921895af8c777fac221439604811d2359249", 16); //public key x mpz_set_str(Qa.y,"6f35647c10df80325be5cc48c5a2a218525db549d3d5839c", 16); //public key y mpz_t encoded_message; mpz_init(encoded_message); mpz_set_ui(encoded_message,0); unsigned char ary[] = "Hello World! 1234567890"; mpz_import(encoded_message, sizeof(ary), 1, sizeof(ary[0]), 1, 0, (const void *)ary); printf("#############################################################################\nary = %s\n", ary); struct Point R; mpz_init(R.x); mpz_init(R.y); struct Point S; mpz_init(S.x); mpz_init(S.y); mpz_t r; mpz_init(r); gmp_randstate_t state; gmp_randinit_mt(state); gmp_randseed_ui(state,rand()); mpz_urandomm(r,state,secp192k1.n); Scalar_Multiplication(secp192k1, r, secp192k1.G, &R); //R = r*G Scalar_Multiplication(secp192k1, r, Qa, &S); //S = r*Qa mpz_t e; mpz_init(e); mpz_xor(e,S.x,S.y); //My simplifed variant of the symmetric encryption part, not standard for real ECIES, probably insecure mpz_xor(e,e,encoded_message); //ciphertext = S.x ^ S.y ^ cleartext gmp_printf("Qa.x = %Zx //Point Qa is the PUBLIC_KEY\nQa.y = %Zx\n", Qa.x, Qa.y); gmp_printf("Ciphertext Message => Rx = %Zx //Point R is the CHOOSEN_POINT\nCiphertext Message => Ry = %Zx\n", R.x, R.y); gmp_printf("Ciphertext Message => e = %Zx\n", e); //Only Rx, Ry, and e get sent over the wire printf("Decrypt 'e' From da && R... //da is the PRIVATE_KEY\n"); struct Point newS; mpz_init(newS.x); mpz_init(newS.y); Scalar_Multiplication(secp192k1, da, R, &newS); mpz_t decoded_message; mpz_init(decoded_message); mpz_xor(decoded_message,newS.x,newS.y); mpz_xor(decoded_message,decoded_message,e); unsigned char *result = (unsigned char *)malloc(sizeof(unsigned char)*mpz_sizeinbase(decoded_message,8)); mpz_export(result, NULL, 1, sizeof(result[0]), 1, 0, decoded_message); printf("dec = %s\n\n", result); mpz_clear(secp192k1.a); mpz_clear(secp192k1.b); mpz_clear(secp192k1.p); mpz_clear(secp192k1.n); mpz_clear(secp192k1.G.x); mpz_clear(secp192k1.G.y); mpz_clear(secp192k1.h); mpz_clear(R.x); mpz_clear(R.y); mpz_clear(S.x); mpz_clear(S.y); mpz_clear(newS.x); mpz_clear(newS.y); mpz_clear(da); mpz_clear(e); mpz_clear(r); mpz_clear(encoded_message); mpz_clear(decoded_message); mpz_clear(Qa.x); mpz_clear(Qa.y); return 0; } void Point_Addition(struct Elliptic_Curve EC, struct Point P,struct Point Q,struct Point *R){ mpz_mod(P.x,P.x,EC.p); mpz_mod(P.y,P.y,EC.p); mpz_mod(Q.x,Q.x,EC.p); mpz_mod(Q.y,Q.y,EC.p); mpz_t temp,slope; mpz_init(temp); mpz_init_set_ui(slope,0); if(mpz_cmp_ui(P.x,0)==0 && mpz_cmp_ui(P.y,0)==0){ mpz_set(R->x,Q.x); mpz_set(R->y,Q.y); return; } if(mpz_cmp_ui(Q.x,0)==0 && mpz_cmp_ui(Q.y,0)==0){ mpz_set(R->x,P.x); mpz_set(R->y,P.y); return; } if(mpz_cmp_ui(Q.y,0)!=0){ mpz_sub(temp,EC.p,Q.y); mpz_mod(temp,temp,EC.p); }else mpz_set_ui(temp,0); if(mpz_cmp(P.y,temp)==0 && mpz_cmp(P.x,Q.x)==0){ mpz_set_ui(R->x,0); mpz_set_ui(R->y,0); return; } if(mpz_cmp(P.x,Q.x)==0 && mpz_cmp(P.y,Q.y)==0){ Point_Doubling(EC,P,R); return; }else{ mpz_sub(temp,P.x,Q.x); mpz_mod(temp,temp,EC.p); mpz_invert(temp,temp,EC.p); mpz_sub(slope,P.y,Q.y); mpz_mul(slope,slope,temp); mpz_mod(slope,slope,EC.p); mpz_mul(R->x,slope,slope); mpz_sub(R->x,R->x,P.x); mpz_sub(R->x,R->x,Q.x); mpz_mod(R->x,R->x,EC.p); mpz_sub(temp,P.x,R->x); mpz_mul(R->y,slope,temp); mpz_sub(R->y,R->y,P.y); mpz_mod(R->y,R->y,EC.p); return; } } void Point_Doubling(struct Elliptic_Curve EC, struct Point P,struct Point *R){ mpz_t slope,temp; mpz_init(temp); mpz_init(slope); if(mpz_cmp_ui(P.y,0)!=0){ mpz_mul_ui(temp,P.y,2); mpz_invert(temp,temp,EC.p); mpz_mul(slope,P.x,P.x); mpz_mul_ui(slope,slope,3); mpz_add(slope,slope,EC.a); mpz_mul(slope,slope,temp); mpz_mod(slope,slope,EC.p); mpz_mul(R->x,slope,slope); mpz_sub(R->x,R->x,P.x); mpz_sub(R->x,R->x,P.x); mpz_mod(R->x,R->x,EC.p); mpz_sub(temp,P.x,R->x); mpz_mul(R->y,slope,temp); mpz_sub(R->y,R->y,P.y); mpz_mod(R->y,R->y,EC.p); }else{ mpz_set_ui(R->x,0); mpz_set_ui(R->y,0); } } void Scalar_Multiplication(struct Elliptic_Curve EC, mpz_t m, struct Point P, struct Point *R){ struct Point Q,T; mpz_init(Q.x); mpz_init(Q.y); mpz_init(T.x); mpz_init(T.y); long no_of_bits,loop; no_of_bits=mpz_sizeinbase(m,2); mpz_set_ui(R->x,0); mpz_set_ui(R->y,0); if(mpz_cmp_ui(m,0)==0) return; mpz_set(Q.x,P.x); mpz_set(Q.y,P.y); if(mpz_tstbit(m,0)==1){ mpz_set(R->x,P.x); mpz_set(R->y,P.y); } for(loop=1;loop<no_of_bits;loop++){ mpz_set_ui(T.x,0); mpz_set_ui(T.y,0); Point_Doubling(EC,Q,&T); mpz_set(Q.x,T.x); mpz_set(Q.y,T.y); mpz_set(T.x,R->x); mpz_set(T.y,R->y); if(mpz_tstbit(m,loop)) Point_Addition(EC,T,Q,R); } }
×
×
  • Create New...